Abstract

Reference ionization chamber dosimetry in clinical proton beams is generally performed with cylindrical ionization chambers. However, when the measurement is performed in the presence of a large depth dose gradient or in a narrow spread out Bragg peak (SOBP), it could be advisable to use a plane-parallel chamber. Few recommendations and studies have been devoted to this subject. In this paper, experimental information on perturbation correction factors for four plane-parallel ionization chamber types in proton beams is presented. The experiments were performed in 75 MeV modulated and non-modulated proton beams. Monte Carlo calculations have been performed to support the conclusions of the experimental work.Overall, we were not able to find experimental evidence for significant differences between the secondary electron perturbation correction factors for plane-parallel chambers and those for a cylindrical NE2571. We found experimental ratios of perturbation correction factors that did not differ by more than 0.6% from unity for a Roos and two NACP02 chambers, and by not more than 1.2% for a Calcam-2 and two Markus chambers. Monte Carlo simulations result in corrections that are limited to 0.6% in absolute value, but given the overall uncertainties of the measurements, the deviations of the correction factors from unity could not be resolved from the experimental results. The results of the simulations thus support the experimental conclusion that perturbation correction factors for the set of plane-parallel chambers in both proton beams (relative to NE2571) do not deviate from unity by more than 1.2%. This confirms, within the experimental uncertainties, the assumption that the overall perturbation correction factor for a plane-parallel chamber in a low-energy proton beam is unity, made in IAEA TRS-398 and other dosimetry protocols. Given the large uncertainties of the gradient correction factors to be applied when using a cylindrical ionization chamber in a narrow SOBP or in the presence of a strong depth dose gradient, the level of agreement between plane-parallel and cylindrical ionization chambers observed in this study shows that plane-parallel chambers are a reliable alternative for reference dosimetry in low-energy proton beams.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.