Abstract

Simulating Many Accumulative Rutherford Trajectories Electron Photon and Neutral Transport Solver (SMARTEPANTS) is a discrete ordinates S N Boltzmann/Spencer-Lewis solver that was developed during 1988-1993 by William Filippone and his students. The code calculates particle fluxes, leakage currents as well as energy and charge deposition for coupled electron/photon in x-y-z geometries both in forward and in adjoin modes. Originally, SMARTEPANTS was designed to utilize CEPXS cross-section library for shielding calculation in satellite electronics. The aim of this study was to adapt SMARTEPANTS to use a new photon cross-section library from Evaluated Photon Data Library, 1997 version (EPDL97) for intravascular brachytherapy (125)Isimulations. A MATLAB (MathworkNatick, Massachusetts) program was written to generate an updated multigroup-Legendre cross-section from EPDL97. The new library was confirmed by simulating intravascular brachytherapy Best® Model 2301 and Intersource (125)I dosimetry parameters using SMARTEPANTS with different energy groups (g), Legendre moments (L) and discrete ordinate orders (S). The dosimetry parameters for these sources were tabulated and compared with the data given by AAPM TG-43 and other reports. The computation time for producing TG-43 parameters was about 29.4 min in case of g = 20, L = 7 and S = 16. The good agreement between the results of this study and previous reports and high computational speed suggest that SMARTEPANTS could be extended to a real-time treatment planning system for (125)I brachytherapy treatments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.