Abstract

In the dosimetry of boron neutron capture therapy (BNCT) beams, thermoluminescent (TL) detectors are typically applied in phantom measurements to determine the spatial distribution of the gamma ray and neutron dose. Pairs of 6LiF and 7LiF are applied to discriminate between the thermal neutron and gamma ray field components, exploiting the high cross section for (n,alpha) reaction of 6Li. At the Institute of Nuclear Physics (INP) in Kraków (Poland) a prototype TL-based measuring set has been constructed and tested. This set consists of a miniature TL detector (of 2 mm diameter and 0.4 mm thickness) placed inside a miniature container made of non-thermoluminescent 6LiF. The outer dimensions of the set are 4.5 mm diameter and 1.4 mm thickness, enabling its application in place of a thermoluminescence dosemeter pellet in typical phantoms. The detector sets were tested in the BNCT beam of the Studsvik reactor. By exploiting the ratio of TL signals of the unshielded and shielded detectors, it was possible to estimate the contributions of the thermal and epithermal components of the neutron field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call