Abstract

PurposeTo measure the 2D dose distributions with submillimeter resolution for 131Cs (model CS-1 Rev2) and 125I (model 6711) seeds in a Solid Water phantom using radiochromic EBT film for radial distances from 0.06cm to 5cm. To determine the TG-43 dosimetry parameters in water by applying Solid Water to liquid water correction factors generated from Monte Carlo simulations. MethodsEach film piece was positioned horizontally above and in close contact with a 131Cs or 125I seed oriented horizontally in a machined groove at the center of a Solid Water phantom, one film at a time. A total of 74 and 50 films were exposed to the 131Cs and 125I seeds, respectively. Different film sizes were utilized to gather data in different distance ranges. The exposure time varied according to the seed air-kerma strength and film size in order to deliver doses in the range covered by the film calibration curve. Small films were exposed for shorter times to assess the near field, while larger films were exposed for longer times in order to assess the far field. For calibration, films were exposed to either 40kV (M40) or 50kV (M50) x-rays in air at 100.0cm SSD with doses ranging from 0.2Gy to 40Gy. All experimental, calibration and background films were scanned at a 0.02cmpixel resolution using a CCD camera-based microdensitometer with a green light source. Data acquisition and scanner uniformity correction were achieved with Microd3 software. Data analysis was performed using ImageJ, FV, IDL and Excel software packages. 2D dose distributions were based on the calibration curve established for 50kV x-rays. The Solid Water to liquid water medium correction was calculated using the MCNP5 Monte Carlo code. Subsequently, the TG-43 dosimetry parameters in liquid water medium were determined. ResultsValues for the dose-rate constants using EBT film were 1.069±0.036 and 0.923±0.031cGyU−1h−1 for 131Cs and 125I seed, respectively. The corresponding values determined using the Monte Carlo method were 1.053±0.014 and 0.924±0.016cGyU−1h−1 for 131Cs and 125I seed, respectively. The radial dose functions obtained with EBT film measurements and Monte Carlo simulations were plotted for radial distances up to 5cm, and agreed within the uncertainty of the two methods. The 2D anisotropy functions obtained with both methods also agreed within their uncertainties. ConclusionEBT film dosimetry in a Solid Water phantom is a viable method for measuring 131Cs (model CS-1 Rev2) and 125I (model 6711) brachytherapy seed dose distributions with submillimeter resolution. With the Solid Water to liquid water correction factors generated from Monte Carlo simulations, the measured TG-43 dosimetry parameters in liquid water for these two seed models were found to be in good agreement with those in the literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call