Abstract

Background:Hip prostheses (HPs) are routinely used in hip augmentation to replace painful or dysfunctional hip joints. However, high-density and high-atomic-number (Z) inserts may cause dose perturbations in the target volume and interface regions.Aim:To evaluate the dosimetric influence of various HPs during megavoltage conformal radiotherapy (RT) of the prostate using Monte Carlo (MC) simulations.Materials and Methods:BEAMnrc and DOSXYZnrc MC user-codes were respectively used to simulate the linac head and to calculate 3D absorbed dose distributions in a computed tomography (CT)-based phantom. A novel technique was used to synthetically introduce HPs into the raw patient CT dataset. The prosthesis materials evaluated were stainless steel (SS316L), titanium (Ti6Al4V), and ultra-high-molecular-weight polyethylene (UHMWPE). Four, five, and six conformal photon fields of 6–20 MV were used.Results:The absorbed dose within and beyond metallic prostheses dropped significantly due to beam attenuation. For bilateral HPs, the target dose reduction ranged up to 23% and 17% for SS316L and Ti6Al4V, respectively. For unilateral HP, the respective dose reductions were 19% and 12%. Dose enhancement was always <1% for UHMWPE. The 6-field plan produced the best target coverage. Up to 38% dose increase was found at the bone–SS316L proximal interface.Conclusions:The novel technique used enabled the complete exclusion of metal artifacts in the CT dataset. High-energy plans with more oblique beams can help minimize dose attenuation through HPs. Shadowing and interface effects are density dependent and greatest for SS316L, while UHMWPE poses negligible dose perturbation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call