Abstract

Ultrasoft X-rays of 0.3-5 keV have provided a unique tool for the investigation of intracellular mechanisms of radiation action in biological organisms, including mammalian cells. However, their use presents unique practical problems in dosimetry and experimental design. Detailed interpretation of the biological results requires reliable dosimetry and well characterised monoenergetic beams. This paper presents a comparison between two fundamentally different dosimetric techniques, namely the ionisation current in an extrapolation chamber and photon counts in a proportional counter. Agreement within 7% was obtained when these two methods were applied to an Al K X-ray beam (1.5 keV) from an MRC cold-cathode transmission target discharge tube as previously used in many biological experiments. Photographic film was calibrated as a relative dosimetric technique and used for investigation of the intensity uniformity of the radiation field. These techniques provide a comprehensive characterisation of the beam in the position of the biological cells, including photon flux (or absorbed dose rate), spectral purity (showing <<1% bremsstrahlung relative to characteristic Al X-rays) and uniformity over the irradiation area (within about 5% for mammalian cell irradiations).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call