Abstract
Polymer-carbon nanostructures have been used as gamma-ray dosimeters. The thickness of the sensitive volume material plays an important role in the determination of the dosimetry response. In this work, the thickness effect of a real-time dosimeter based on the Epoxy/Multi-walled carbon nanotube (MWCNT) nanocomposite was investigated. The amount of electrical percolation threshold (EPT) for Epoxy/MWCNT nanocomposite was initially simulated using the finite element method. Then, the 0.1 MWCNT wt% nanocomposite was fabricated using a solution method with three thicknesses of 1, 2, and 3 mm. FESEM images demonstrated a good dispersion state of the inclusions into the Epoxy matrix. The samples were irradiated by gamma-rays of Co-60 source over the dose rates of 25–166 mGy/min. In addition, dosimetric characteristics were performed, including linearity, bias-polarity, angular dependence, energy dependence, field size, and repeatability. Results revealed that with increasing the thickness, the dosimetry response was enhanced remarkably.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.