Abstract

Three types of detectors were used onboard the MIR station during the 28th base expeditions to characterise the radiation field: a linear energy transfer (LET) spectrometer was used to establish the LET spectrum between 7 and 700 keV/ μm corresponding mostly to secondary charged particles; a set of thermoluminescent detectors was used to characterise the low LET component of the onboard radiation field; and Si-diodes were installed to determine the contribution to the exposure due to fast neutrons. It was found out that the LET spectrum from secondary particles between 7 and 700 KeV/ μm does not depend on the external radiator; the average quality factors for the region mentioned are about 6.0 with ICRP 26 quality factors and about 6.8 with ICRP 60 quality factors. Both differential and integral LET spectra are presented for some typical cases, not only for particle number but also for the dose characteristics like dose and dose equivalent. The spectra obtained also permitted us to calculate the total doses and dose equivalents due to secondary particles with the LET values between 7 and 700 keV/ μm . It was found out that these quantities are higher for the case of detectors placed in the less shielded area, both for the LET spectrometer (high LET part) as well as for TLDs measuring the low LET component. Total dosimetric characteristics obtained as a sum of both components mentioned are a little lower than previously reported.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call