Abstract

Heavy-ion irradiation systems were designed and constructed at two cyclotron facilities in Japan for use in various fields of radiation physics and radiation biology. A 135 MeV/u carbon beam as well as 12 MeV/u carbon and helium-3 beams were first used in experiments. We have established a systematic method for heavy-ion dosimetry at both high and low incident energies involving measurements of fluences. We also obtained differential W values (w) of air for those beams by comparing the results of fluence measurement dosimetry with ionization chamber dosimetry. The differential W values of air were found to be 36.2 +/- 1.0, 34.5 +/- 1.0, and 33.7 +/- 0.9 eV for 6.7 MeV/u carbon ions, 10.3 MeV/u 3He ions, and 129.4 MeV/u carbon ions, respectively. The w value for high-energy heavy ions approaches the W value for high-energy electron or photon beams. In ionization chamber dosimetry for a heavy-ion beam, we found a track-size effect. A difference in the track sizes of heavy ions in the gas and solid phases affected the output current of the ion chamber in the case of high-energy heavy ions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.