Abstract

An estimate of the tritium dose to the public in the vicinity of the heavy water research reactor facility at AECL-Chalk River Laboratories, Ontario, Canada, has largely been accomplished from analyses on regularly-collected samples of air, precipitation, drinking water and foodstuffs (pasture, fruit, vegetables and milk) and environmental dose models. To increase the confidence with which public doses are calculated, tritium doses were estimated directly from the ratio of tritiated species in urine samples from members of the general public. Single cumulative 24 h urine samples from a few adults living in the vicinity of the heavy-water research reactor facility at Chalk River Laboratories, Canada were collected and analysed for tritiated water and organically bound tritium. The participants were from Ottawa (200 km east), Deep River (10 km west) and Chalk River Laboratories. Tritiated water concentrations in urine ranged from 6.5 Bq.l-1 for the Ottawa resident to 15.9 Bq.l-1 for the Deep River resident, and were comparable to the ambient levels of tritium-in-precipitation at their locations. The ultra-low levels of organically bound tritium in urine from these same individuals were measured by 3He-ingrowth mass spectrometry and were 0.06 Bq.l-1 (Ottawa) and 0.29 Bq.l-1 (Deep River). For Chalk River Laboratories workers, tritiated water concentrations in urine ranged from 32 Bq.l-1 to 9.2 x 10(4) Bq.l-1, depending on the ambient levels of tritium in their workplace. The organically bound tritium concentrations in urine from the same workers were between 0.08 Bq.l-1 and 350 Bq.l-1. With a model based on the ratio of tritiated water to organically bound tritium in urine, the estimated dose arising from organically bound tritium in the body for the Ottawa and Deep River residents was about 26% and 50%, respectively, of the body water tritium dose. The workers in a reactor building at Chalk River Laboratories had less than 10% dose contribution from organically bound tritium, but had higher overall tritium dose due to frequent intakes of tritiated water vapour in the workplace. The results of this study suggest that most of the tritium dose to workers at Chalk River and general population near Chalk River is the result of tritiated water intakes and not due to dietary intake of organically bound tritium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call