Abstract

To evaluate the dose distributions of an 192Ir source (model VS2000) in homogeneous water geometry calculated using a deterministic grid-based Boltzmann transport equation solver (GBBS) in the commercial treatment planning system (TPS) (BRACHYVISION-ACUROS V8.8). Using percent dose differences (%deltaD), the GBBS (BV-ACUROS) was compared to the (1) published TG-43 data, (2) MCNPX Monte Carlo (MC) simulations of the 192Ir source centered in a 15 cm radius water sphere, and (3) TG-43 output from the TPS using vendor supplied (BV-TG43-vendor) and user extended (BV-TG43-extended) 2D anisotropy functions F(r, theta). BV-ACUROS assumes 1 mm of NiTi cable, while the TPS TG-43 algorithm uses data based on a 15 cm cable. MC models of various cable lengths were simulated. The MC simulations resulted in > 20% dose deviations along the cable for 1, 2, and 3 mm cable lengths relative to 15 cm. BV-ACUROS comparisons with BV-TG43-vendor and BV-TG43-extended yielded magnitude of differences, consistent with those seen in MC simulations. However, differences > 20% extended further (theta < or = 10 degrees) when using the vendor supplied anisotropy function F(ven0(r, theta). These differences were also seen in comparisons of F(r, theta) derived from the TPS output. The results suggest that %deltaD near the cable region is larger than previously estimated. The spatial distribution of the dose deviation is highly dependent on the reference TG-43 data used to compare to GBBS. The differences observed, while important to realize, should not have an impact on clinical dosimetry in homogeneous water.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call