Abstract

Introduction: Spine stereotactic body radiation therapy (SBRT) achieves favorable outcomes compared to conventional radiotherapy doses/fractionation. The spinal cord is the principal dose-limiting organ-at-risk (OAR), and safe treatment requires precise immobilization/localization. Therefore, image guidance is paramount to successful spine SBRT. Conventional X-ray imaging and alignment to surrogate bony anatomy may be inadequate, whereas magnetic resonance imaging (MRI) directly visualizes the dose-limiting cord. This work assessed the dosimetric capability of the ViewRay (ViewRay Inc. Oakwood Village, OH) magnetic resonance (MR) guided linac (MR-Linac) for spine SBRT.Methods: Eight spine SBRT patients without orthopedic hardware who were previously treated on a TrueBeam using volumetric modulated arc therapy (VMAT) were re-planned using MR-Linac fixed-field intensity-modulated radiation therapy (IMRT). Phantom measurements using film, ionization chamber, and a commercial diode-array assessed feasibility. Plans included a variety of prescriptions (30-50 Gy in 3-10 fractions).Results: MR-Linac plans satisfied all clinical goals. Compared to VMAT plans, both entrance dose and heterogeneity increased (Dmax: 134±3% vs. 120±2%, p=0.0270), while conformality decreased (conformity index: 1.28±0.06 vs. 1.06±0.06, p=0.0005), and heterogeneity increased. However, while not statistically significant, MR-linac cord sparing improved (cord Dmax: 16.1±2.7Gy vs. 19.5±1.6Gy, p=0.2066; cord planning organ at risk volume (cord PRV) Dmax: 20.0±2.6Gy vs. 24.5±2.0Gy, p=0.0996). Delivery time increased but was acceptable (14.39±1.26min vs. 9.57±1.19min). Ionization chamber measurements agreed with planned dose to within 2.5%. Film and diode measurements demonstrated accurate/precise delivery of dose gradients between the target and the cord.Conclusion: Spine SBRT with the MR-Linac is feasible as verified via re-planning eight clinical cases followed by delivery verification in phantoms using film, diodes, and an ionization chamber. Real-time visualization of the dose-limiting cord during spine SBRT may enable cord-based gating, reduced margins, alternate dose schemas, and/or adaptive therapy.

Highlights

  • Spine stereotactic body radiation therapy (SBRT) achieves favorable outcomes compared to conventional radiotherapy doses/fractionation

  • Eight spine SBRT patients without orthopedic hardware who were previously treated on a TrueBeam using volumetric modulated arc therapy (VMAT) were re-planned using magnetic resonance (MR)-Linac fixed-field intensity-modulated radiation therapy (IMRT)

  • Eight spine SBRT plans recently treated in our clinic were re-planned in the ViewRay treatment planning system (TPS)

Read more

Summary

Introduction

Spine stereotactic body radiation therapy (SBRT) achieves favorable outcomes compared to conventional radiotherapy doses/fractionation. The spinal cord is the principal dose-limiting organ-at-risk (OAR), and safe treatment requires precise immobilization/localization. Image guidance is paramount to successful spine SBRT. Conventional X-ray imaging and alignment to surrogate bony anatomy may be inadequate, whereas magnetic resonance imaging (MRI) directly visualizes the dose-limiting cord. Ablative stereotactic body RT (SBRT) may provide improved efficacy compared to conventional fractionation [1]. Spine SBRT has improved potential for retreatment and dose escalation for radioresistant disease. Accuracy and precision are paramount to spine SBRT, thereby emphasizing patient immobilization and image guidance. The primary dose-limiting organ-at-risk (OAR) is the spinal cord. Cord definition is usually from magnetic resonance imaging (MRI) (or computed tomography (CT) myelography). Inability to visualize/immobilize the cord during treatment, and the importance of respecting

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.