Abstract

A practical method was designed to verify the accuracy of dose distributions calculated using Compass, which can reconstruct the dose distribution inside a patient’s body during intensity-modulated radiation therapy (IMRT). Twelve virtual IMRT treatment plans were developed using an ArcCHECK diode detector array, and then the recalculated and reconstructed doses in Compass were compared with the actual measurements to assess the dosimetric accuracy. Based on the results of gamma evaluation for the 12 plans, Compass achieved average pass rates higher than 98%, which confirmed proper dosimetric accuracy in the IMRT quality assurance process. The validity of Compass for clinical applications was also confirmed through an additional comparison with the results calculated using 3DVH, another dose reconstruction program. It is necessary to verify the accuracy of the dose calculated using the program in advance before the commercialized dose reconstruction program is applied in clinical practice. This study has limitations in that it did not provide a real scientific contribution such as an introduction of new algorithm for dose calculation and the development of new measurement tools. However, the method based on the comparative analysis with the actual measured dose values as devised in this study seems to be useful in that it can be applied effectively to verify the dosimetric accuracy of the dose reconstruction program before first using it in the clinical cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.