Abstract

Several physical factors such as dose rate and photon energy may change response and sensitivity of polymer gel dosimeters. This study aims to evaluate the R2-dose response and sensitivity dependence of PASSAG-U gel dosimeters with 3% and 5% urea on dose rate and photon energy. The PASSAG-U gel dosimeters were prepared under normal atmospheric conditions. The obtained gel dosimeters were irradiated to different dose rates (100, 200, and 300 cGy/min) and photon energies (6 and 15 MV). Finally, responses (R2) of the PASSAG-U gel dosimeters with 3% and 5% urea were analyzed by MRI technique at 1, 10, 14 days after the irradiation process. The findings showed that the R2-dose responses of PASSAG-U gel dosimeters with 3% and 5% urea do not vary under the differently evaluated dose rates and photon energies. The R2-dose sensitivity of PASSAG-U polymer gel dosimeter with 3% urea does not change under the differently evaluated dose rates and photon energies, but it changes for PASSAG-U polymer gel dosimeter with 5% urea. The dose resolution values ranged from 0.20 to 0.86 Gy and from 0.27 to 2.20 Gy for the PASSAG-U gel dosimeter with 3% and 5% urea for the different dose rates and photon energies, respectively. Furthermore, it was revealed that the R2-dose response and sensitivity dependence of PASSAG-U gel dosimeters with 3% and 5% urea on dose rate and photon energy can vary over post irradiation time. The study results demonstrated that dosimetric characteristics (dependence of dose rate and photon energy, and dose resolution) of PASSAG-U gel dosimeter with 3% were better than those of PASSAG-U gel dosimeter with 5% urea.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.