Abstract

Purpose/Aim:Forward planned intensity-modulated radiotherapy (forward IMRT) with breath-hold (BH) technique is considered optimal by most practitioners for treating left-sided breast cancer. Regional nodal irradiation including axilla and supraclavicular fossa (SCF) increases can increase dose-to-organs at risk (OAR) especially lung. This study was done to assess the potential of inverse planned IMRT (inverse IMRT) to achieve significant reduction in dose to OAR.Materials and Methods:Ten patients with left-sided breast cancer treated with Active Breath Co-ordinator BH technique were included in the study. Forward IMRT plans were generated in both BH and free breathing (FB) scans. Inverse IMRT plans were generated in FB scan using Tomotherapy-Direct and Tomotherapy-Helical techniques. Contouring was done as per the ESTRO consensus contouring guidelines. The dose prescribed was 40 Gy in 15 fractions. Statistical significance was tested using one-way ANOVA for parametric data and Kruskall–Wallis test for nonparametric data. Multiple comparison tests were done by using Bonferroni test. P <0.05 was considered to denote statistical significance.Results:Inverse IMRT plans achieved superior homogeneity index compared to forward IMRT with BH. Tomotherapy-Direct reduced dose to ipsilateral lung, compared to the forward IMRT with BH while achieving similar doses to other OAR. Tomotherapy-Helical plans achieved significantly better conformity index and reduced maximum dose to left anterior descending artery compared to forward IMRT plans, but low dose to other OAR was significantly worse.Conclusion:For left-sided breast, axilla, and SCF radiotherapy, inverse IMRT with Tomotherapy-Direct plan achieved better homogeneity index and reduced dose to ipsilateral lung compared to forward IMRT with BH.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call