Abstract
PurposePreclinical studies using a new treatment modality called FLASH Radiotherapy (FLASH-RT) need a two-phase procedure to ensure minimal uncertainties in the delivered dose. The first phase requires a new investigation of the reference dosimetry lying outside the conventional metrology framework from national metrology institutes but necessary to obtain traceability, repeatability, and stability of irradiations. The second consists of performing special quality assurance procedure prior to irradiation. Materials and MethodsThe Oriatron eRT6 (PMB-Alcen, France) is an experimental high dose-per-pulse linear accelerator, delivering a 6 MeV pulsed electron beam with mean dose-rates, ranging from a few Gy/min up to thousands of Gy/s. Absolute dosimetry is investigated with alanine, thermo-luminescent dosimeters (TLD) and radiochromic films as well as an ionization chamber for relative stability. The beam characteristic and dosimetry are prepared for three different setups. ResultsA cross-check between alanine, films and TLD revealed a dose agreement within 3% for dose-rates between 0.078 Gy/s and 1050 Gy/s, showing that these dosimeters are suitable for absolute dosimetry for FLASH-RT. In absence of appropriate setup dependent corrections, active dosimetry can reveal dose deviations up to 15% of the prescribed dose. These differences reduce to less than 3% when our dosimetric procedure is applied. ConclusionWe developed procedures to accurately irradiate biological models. Our method is based on validated absolute dosimeters and extends their use to routine FLASH irradiations. We reached an agreement of 3% between the delivered and prescribed dose and developed the requirements needed for workflows of preclinical and clinical studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.