Abstract

The dose-effect relationships between different levels of hypergravity (>+1.0 Gz) and steady-state hemodynamic parameters have been reported in several studies. However, little has been reported on the dose-effect relationship between hypergravity levels and estimates of autonomic circulatory regulation, such as heart rate variability, arterial pressure variability, and spontaneous cardiac baroreflex sensitivity. We investigated dose-effect relationships between hypergravity levels from +1.0 Gz to +2.0 Gz (Δ0.5 Gz) and autonomic circulatory regulation to test our hypothesis that autonomic circulatory regulation has a linear relationship with hypergravity levels. Using a short-arm human centrifuge, 10 healthy seated men were subjected to +1.0 Gz, +1.5 Gz, and +2.0 Gz hypergravity. We evaluated steady-state hemodynamic parameters and autonomic circulatory regulation indices. Heart rate variability, arterial pressure variability, and spontaneous cardiac baroreflex sensitivity between arterial pressure and R-R interval variabilities were assessed by spectral analysis, sequence analysis, and transfer function analysis. Steady-state heart rate, stroke volume, and sequence slope (indicating spontaneous cardiac baroreflex sensitivity in response to rapid changes in arterial pressure) showed linear correlations with increases in gravity (from +1.0 Gz to +2.0 Gz). On the other hand, steady-state cardiac output, steady-state systolic arterial pressure, and low-frequency power of diastolic arterial pressure (indicating peripheral vasomotor sympathetic activity) remained unchanged with gravity increases. Contrary to our hypothesis, the present study suggested that autonomic circulatory regulations show complex changes with hypergravity levels. Spontaneous cardiac baroreflex sensitivity reduces in a dose-dependent manner from +1.0 Gz to +2.0 Gz, whereas peripheral vasomotor sympathetic activity seems to be maintained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call