Abstract

Dental caries is one of the most common chronic diseases worldwide. Streptococcus mutans and Candida albicans are two major pathogens associated with dental caries. Several recent studies revealed that Lactobacillus plantarum inhibits S. mutans and C. albicans in biofilms and in a rodent model of dental caries. The aim of this study was to investigate the dose-dependent effect of L. plantarum against S. mutans and C. albicans in a planktonic model that simulated a high-caries-risk clinical condition. Mono-, dual-, and multi-species models were utilized, with five doses of L. plantarum (ranging from 1.0 × 104 to 1.0 × 108 CFU/mL). Real-time PCR was used to assess the expression of the virulence genes of C. albicans and S. mutans and the genes of L. plantarum. Student's t-tests and one-way ANOVA, followed by post hoc tests, were employed to compare the cell viability and gene expression among groups. A dose-dependent inhibition on C. albicans and S. mutans was observed with increased dosages of L. plantarum. L. plantarum at 108 CFU/mL demonstrated the highest antibacterial and antifungal inhibitory effect in the dual- and multi-species models. Specifically, at 20 h, the growth of C. albicans and S. mutans was suppressed by 1.5 and 5 logs, respectively (p < 0.05). The antifungal and antibacterial effects were attenuated in lower doses of L. plantarum (104-107 CFU/mL). The expression of C. albicans HWP1 and ECE 1 genes and S. mutans lacC and lacG genes were significantly downregulated with an added 108 CFU/mL of L. plantarum (p < 0.05). The addition of 108 CFU/mL L. plantarum further inhibited the hyphae or pseudohyphae formation of C. albicans. In summary, L. plantarum demonstrated dose-dependent antifungal and antibacterial effects against C. albicans and S. mutans. L. plantarum emerged as a promising candidate for the creation of novel antimicrobial probiotic products targeting dental caries prevention. Further research is warranted to identify the functional metabolites produced by L. plantarum at different dosages when interacting with C. albicans and S. mutans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.