Abstract

Compensation responses and adaptability of hypothalamic-pituitary-gonadal (HPG) axis have been reported in fish exposed to model chemicals, however due to its importance in predictive toxicology further study was needed to elucidate details of the integrated responses to model chemicals. Transcriptional profiles of the hypothalamic-pituitary-gonadal (HPG) axis and concentrations of 17β-estradiol (E2) in plasma were measured in male and female zebrafish that had been exposed to one of seven concentrations of the fungicide, prochloraz: low (1, 3 or 10μg/L), medium (30 or 100μg/L) or high concentrations (300 or 1000μg/L) for 4 days. In zebrafish exposed to the low and medium concentrations of prochloraz, compensation responses of the HPG axis through transcription, occurred in brain (up-regulation of gnrh, gnrhr and lhβ) and both brain and gonad (up-regulation of steroidogenic genes), respectively. Concentrations of E2 in plasma and expression of estrogen receptor 1 (er1) and vitellogenins (vtgs) in liver did not change. This result suggested that compensatory responses were successful in maintaining homeostasis. In zebrafish exposed to the two greatest concentrations, compensatory responses occurred in brain, gonad and liver through up-regulation of er2β, but it failed to maintain concentration of E2 in blood plasma and expression of er1 and vtgs in liver. Collectedly, the results observed in this study allowed characterization of dose-dependent compensatory responses along the HPG axis and liver and identified key linkages between compensatory responses occurring in brain, gonad and liver after exposure to prochloraz.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.