Abstract

Ataxia telangiectasia and Rad3-related (ATR) initiates and regulates cellular responses to DNA damage, such as those caused by cancer treatments. Several ATR inhibitors (ATRi) are in clinical development including AZD6738. Therapeutic indices among ATRi may differ as a result of varying potencies and concentrations at both tumor and off-target sites. Additionally, AZD6738 contributes to anti-tumor immune responses necessitating evaluation of exposure at immunological sites. Using mouse models and a highly sensitive LC-MS/MS assay, the pharmacokinetics of AZD6738 were studied, including dose linearity, bioavailability, metabolism, and tissue distribution in tumor-bearing mice. Initial studies identified dose-dependent bioavailability, with greater than proportional increases in exposure as dose increased resulting in a ~ twofold increase in bioavailability between the lowest and highest investigated doses. These behaviors were successfully captured with a compartmental PK model. Analysis of metabolite PK revealed decreasing metabolic ratios with increasing dose, indicative of saturable first-pass metabolism. Further analysis revealed that intestinal and gut metabolism contribute to metabolism and these saturable mechanisms. Studies of tumor and tissue distribution found rapid and extensive drug distribution to most tissues except brain and spinal cord. The complex non-linear behavior of AZD6738 PK in mice was due to pre-systemic saturation and which appears to be recapitulated clinically at low doses. PK reported here will allow future correlation of tissue related toxicities with drug exposure as well as exposure with immunological responses. These results can also be compared with those from similar studies of other ATRi to contrast drug exposure with responses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call