Abstract

An experimental approach was taken to the question of dose-response curves for chemical carcinogenesis. DNA damage in female rat liver was chosen as the experimental parameter because all chemicals found to damage hepatic DNA were rodent carcinogens. The lowest dose causing DNA damage was determined for the 12 active chemicals (1,2-dibromoethane, 1,2-dibromo-3-chloropropane, 1,2-dichloroethane, 1,4-dioxane, methylene chloride, auramine O, Michler's ketone, selenium sulfide, 1,3-dichloropropene, 1,2-dimethylhydrazine, N-nitrosopiperidine and butylated hydroxytoluene). The resulting dose-response curves for rat hepatic DNA damage were plotted versus log of the molar dose (all activity was in five orders of magnitude) and versus percent of chemicals' oral rat LD 50 (most of the activity was in only two orders of magnitude). Dose-response studies of the active chemicals were analyzed by regression methods. With the exception of butylated hydroxytoluene, the dose-response curves fit a linear model well ( r 2 = 0.886) and a quadratic model even better ( r 2 = 0.947). Based on experimental data from 11 DNA-damaging carcinogens (a dose range of 6 orders of magnitude), an equation and graph of the dose-response relationship of an ‘average DNA-damaging carcinogen’ is presented over the x-axis dose range of eight orders of magnitude.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.