Abstract

Guanidinoacetic acid (GAA) is an intermediate in the biosynthesis of creatine (Cr), yet its use in human nutrition is limited due to a lack of a clear understanding of its' dose-response effect. Thus, the purpose of this study was to investigate the effect of three different dosages of GAA (1.2, 2.4 and 4.8 g/day) administered for 6 weeks on serum and urinary variables related to GAA metabolism. Forty-eight healthy volunteers participated in the randomized, placebo-controlled, double-blind, repeated-measure study. At baseline, after 1, 2, 4 and 6 weeks, participants provided both fasting blood samples and 24-h urine. GAA intervention significantly increased serum and urinary GAA, Cr and creatinine as compared to placebo (P < 0.05). Differences were found for serum GAA and Cr responses between the three GAA dosages, with high-dose GAA resulting in a greater increase (P < 0.05) in the plasma concentration of both variables as compared to other GAA dosages. In GAA groups, fasting plasma total homocysteine (T-Hcy) increased by 3.5 μmol/L on average at post-administration, yet no dose-response differences were found between trials. Serum B vitamins were not affected by either placebo or GAA intervention (P > 0.05). Results indicate that low-to-high dosages of exogenous GAA can increase serum concentrations of Cr and T-Hcy while not depleting the B vitamins pool available for remethylation of homocysteine. ClinicalTrials.gov, identification number NCT01133899.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.