Abstract

BackgroundPeriodontal disease is one of the most frequent comorbidities in diabetic patients and can contribute to poor blood glucose control.ObjectiveTo evaluate the effects of ingesting different doses of beta-glucans (BG) isolated from Saccharomyces cerevisiae on alveolar bone loss (ABL) and inflammatory/metabolic parameters in normal and diabetic rats with ligature-induced periodontal disease (PD).DesignSixty male rats were assigned into two groups: non-diabetic or diabetic (i.p. 70 mg/kg streptozotocin) with PD. Then, groups were subdivided into five subgroups according BG doses: 0 mg/Kg; 10 mg/Kg; 20 mg/Kg; 40 mg/Kg or 80 mg/Kg. Animals received BG for 28 days and ligatures were placed on lower first molars during the last 14 days.ResultsABL of diabetic and non-diabetic animals receiving BG 40 mg/kg (1.33 ± 0.03 mm and 0.77 ± 0.07 mm, respectively) and 80 mg/kg (1.26 ± 0.07 mm and 0.78 ± 0.05 mm, respectively) doses was lower (p < 0.05) in comparison to respective controls (1.59 ± 0.11 mm and 0.90 mm ±0.08). COX-2 (Control: 1.66 ± 0.12; 40 mg/kg: 1.13 ± 0.07; 80 mg/kg: 0.92 ± 0.18) and RANKL expressions (Control: 1.74 ± 0.34; 40 mg/kg: 1.03 ± 0.29 ;80 mg/kg: 0.75 ± 0.21), together with the RANKL/OPG ratio (Control: 1.17 ± 0.08; 40 mg/kg: 0.67 ± 0.09; 80 mg/kg: 0.63 ± 0.28) were attenuated above the same dose (p < 0.05). BG did not influence (p > 0.05) metabolic parameters in non-diabetic rats. In diabetic animals, doses above 40 mg/kg reduced IL-1β (Control: 387 ± 66; 40 mg/kg: 309 ± 27; 80 mg/kg: 300 ± 14) and TNF-α (Control: 229 ± 19; 40 mg/kg: 128 ± 53; 80 mg/kg: 71 ± 25), blood glucose levels (Control: 402 ± 49; 40 mg/kg: 334 ± 32; 80 mg/kg: 287 ± 56), total cholesterol (Control: 124 ± 8; 40 mg/kg: 120 ± 10; 80 mg/kg: 108 ± 9), LDL-c + VLDL-c (Control: 106 ± 8; 40 mg/kg: 103 ± 10; 80 mg/kg: 87 ± 10) and triacylglycerols (Control: 508 ± 90; 40 mg/kg: 301 ± 40; 80 mg/kg: 208 ± 61), whereas increased HDL-c (Control: 18 ± 0.5; 40 mg/kg: 19 ± 1; 80 mg/kg: 21 ± 1) (p < 0.05). Optimal dose needed to reduce ABL was higher in diabetic animals with PD.ConclusionsBG ingestion reduced ABL and improved inflammatory profile in a dose-dependent manner. Best effects were achieved with doses above 40 mg/kg.

Highlights

  • Periodontal disease (PD) is a group of inflammatory conditions initiated by the presence of disbiotic biofilm associated to teeth supporting tissues [1, 2]

  • Optimal dose needed to reduce alveolar bone loss (ABL) was higher in diabetic animals with PD

  • Specific components of bacteria stimulate periodontal cells to secrete several pro-inflammatory cytokines, including prostaglandins, IL-1, IL-6, TNF-α and endothelin [3], and promote bone loss through osteoclast activation. This process involves the expression of the receptor activator of nuclear factor kappa-Β ligand (RANKL) and reduced expression of osteoprotegerin (OPG) [4, 5]

Read more

Summary

Introduction

Periodontal disease (PD) is a group of inflammatory conditions initiated by the presence of disbiotic biofilm associated to teeth supporting tissues [1, 2]. Specific components of bacteria (e.g., lipopolysaccharide-LPS) stimulate periodontal cells to secrete several pro-inflammatory cytokines, including prostaglandins, IL-1, IL-6, TNF-α and endothelin [3], and promote bone loss through osteoclast activation. This process involves the expression of the receptor activator of nuclear factor kappa-Β ligand (RANKL) and reduced expression of osteoprotegerin (OPG) [4, 5]. Blood glucose control in diabetic patients is hampered in the presence of PD [7]. Periodontal disease is one of the most frequent comorbidities in diabetic patients and can contribute to poor blood glucose control

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.