Abstract

BackgroundThis study aimed to determine the effect of different carbohydrate (CHO) doses on exercise capacity in patients with McArdle disease—the paradigm of “exercise intolerance”, characterized by complete muscle glycogen unavailability—and to determine whether higher exogenous glucose levels affect metabolic responses at the McArdle muscle cell (in vitro) level. MethodsPatients with McArdle disease (n = 8) and healthy controls (n = 9) underwent a 12-min submaximal cycling constant-load bout followed by a maximal ramp test 15 min after ingesting a non-caloric placebo. In a randomized, double-blinded, cross-over design, patients repeated the tests after consuming either 75 g or 150 g of CHO (glucose:fructose = 2:1). Cardiorespiratory, biochemical, perceptual, and electromyographic (EMG) variables were assessed. Additionally, glucose uptake and lactate appearance were studied in vitro in wild-type and McArdle mouse myotubes cultured with increasing glucose concentrations (0.35, 1.00, 4.50, and 10.00 g/L). ResultsCompared with controls, patients showed the “classical” second-wind phenomenon (after prior disproportionate tachycardia, myalgia, and excess electromyographic activity during submaximal exercise, all p < 0.05) and an impaired endurance exercise capacity (–51% ventilatory threshold and –55% peak power output, both p < 0.001). Regardless of the CHO dose (p < 0.05 for both doses compared with the placebo), CHO intake increased blood glucose and lactate levels, decreased fat oxidation rates, and attenuated the second wind in the patients. However, only the higher dose increased ventilatory threshold (+27%, p = 0.010) and peak power output (+18%, p = 0.007). In vitro analyses revealed no differences in lactate levels across glucose concentrations in wild-type myotubes, whereas a dose–response effect was observed in McArdle myotubes. ConclusionCHO intake exerts beneficial effects on exercise capacity in McArdle disease, a condition associated with total muscle glycogen unavailability. Some of these benefits are dose dependent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.