Abstract
Background: The molecular pathogenesis of depression and psychopharmacology of antidepressants remain elusive. Recent hypotheses suggest that changes in neurogenesis and plasticity may underlie the aetiology of depression. The hippocampus is affected by depression and shows neuronal remodelling during adulthood.Objective: The present study on the adult rat hippocampus, was to evaluate the dose-related effects of chronic venlafaxine on the expression of brain-derived neurotrophic factor (BDNF) and phosphorylated cyclic-AMP response element binding protein (pCREB).Methods: Sprague-Dawley rats were exposed to a variety of chronic unpredictable stressors (CUSs) to establish a depression model. Rats were treated for either 14 or 28 days with venlafaxine (5 and 10 mg/kg, respectively). The hippocampal expression of pCREB and BDNF mRNA and protein was assessed by using immunohistochemistry, western blotting and reverse transcription polymerase chain reaction (RT-PCR).Results: Rats subjected to CUS procedure consumed less sucrose solution compared with non-stressed rats. The CUS influenced exploratory activity resulting in a reduction of the motility counts. Chronic low dose (5 mg/kg, 14 and 28 days), but not high dose (10 mg/kg, 14 and 28 days) of venlafaxine treatment increased the expression of pCREB and BDNF mRNA and protein in the CUS rat hippocampus.Conclusion: Neuronal plasticity-associated proteins such as pCREB and BDNF play an important role both in stress-related depression and in antidepressant effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.