Abstract

The purpose of this study was to measure the dose reduction achieved with dynamically adjustable z-axis collimation. A commercial CT system was used to acquire CT scans with and without dynamic z-axis collimation. Dose reduction was measured as a function of pitch, scan length, and position for total incident radiation in air at isocenter, accumulated dose to the center of the scan volume, and accumulated dose to a point at varying distances from a scan volume of fixed length. Image noise was measured at the beginning and center of the scan. The reduction in total incident radiation in air at isocenter varied between 27% and 3% (pitch, 0.5) and 46% and 8% (pitch, 1.5) for scan lengths of 20 and 500 mm, respectively. Reductions in accumulated dose to the center of the scan were 15% and 29% for pitches of 0.5 and 1.5 for 20-mm scans. For scan lengths greater than 300 mm, dose savings were less than 3% for all pitches. Dose reductions 80 mm or farther from a 100-mm scan range were 15% and 40% for pitches of 0.5 and 1.5. With dynamic z-axis collimation, noise at the extremes of a helical scan was unchanged relative to noise at the center. Estimated reductions in effective dose were 16% (0.4 mSv) for the head, 10% (0.8 and 1.4 mSv) for the chest and liver, 6% (0.8 mSv) for the abdomen and pelvis, and 4% (0.4 mSv) and 55% (1.0 mSv) for coronary CT angiography at pitches of 0.2 and 3.4. Use of dynamic z-axis collimation reduces dose in helical CT by minimizing overscanning. Percentage dose reductions are larger for shorter scan lengths and greater pitch values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call