Abstract

Data has been collected that shows the permanent threshold voltage shift occurring in MOS transistors exposed to the same total dose of gamma radiation can be greater in a high dose-rate environment than in a low dose-rate environment. This dose-rate effect is ascribed to a "Photovoltaic" bias generation in the substrate of a device which results in an effective gate bias change (positive for P-channel and negative for N-channel transistors). The bias change ranges from 0 to ±1 volt during the radiation burst. Thus, in a high dose-rate ionizing environment, the permanent gate threshold voltage shift of an MOS device, which is known to be a function of the gate bias during irradiation, will exhibit an indirect dose-rate dependence which is caused by an internal change in instantaneous gate bias.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.