Abstract

The effects of continuous irradiation over a wide range of dose rates were studied for six different mammalian cell lines in regard to cell survival and proliferation. Cell lines were chosen in which such characteristics as population doubling time, chromosome number, DNA content, acute dose-survival curve parameters, and division delay were as diverse as possible. There was no correlation between the minimum dose rate necessary to stop cell population growth and any of the above listed characteristics, with the exception of division delay following acute doses. In general, the longer the division delay (min/rad), the lower the dose rate required to stop cell population growth. The effects of cell-cycle redistribution during continuous irradiation in regard to cell survival was dramatic. In some cases a reduction in dose rate resulted in an increase in cell killing for a given total dose. This occurred only when dose rates were sufficient to stop cell population growth and after exposure times sufficient ...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.