Abstract
BackgroundEpidermal growth factor receptors (EGFR) are overexpressed on many head and neck squamous cell carcinoma (HNSCC). Radioimmunotherapy (RIT) with F(ab')2 of the anti-EGFR monoclonal antibody panitumumab labeled with the β-particle emitter, 177Lu may be a promising treatment for HNSCC. Our aim was to assess the feasibility of a theranostic strategy that combines positron emission tomography (PET) with [64Cu]Cu-DOTA-panitumumab F(ab')2 to image HNSCC and predict the radiation equivalent doses to the tumour and normal organs from RIT with [177Lu]Lu-DOTA-panitumumab F(ab')2.ResultsPanitumumab F(ab')2 were conjugated to DOTA and complexed to 64Cu or 177Lu in high radiochemical purity (95.6 ± 2.1% and 96.7 ± 3.5%, respectively) and exhibited high affinity EGFR binding (Kd = 2.9 ± 0.7 × 10− 9 mol/L). Biodistribution (BOD) studies at 6, 24 or 48 h post-injection (p.i.) of [64Cu]Cu-DOTA-panitumumab F(ab')2 (5.5–14.0 MBq; 50 μg) or [177Lu]Lu-DOTA-panitumumab F(ab')2 (6.5 MBq; 50 μg) in NRG mice with s.c. HNSCC patient-derived xenografts (PDX) overall showed no significant differences in tumour uptake but modest differences in normal organ uptake were noted at certain time points. Tumours were imaged by microPET/CT with [64Cu]Cu-DOTA-panitumumab F(ab')2 or microSPECT/CT with [177Lu]Lu-DOTA-panitumumab F(ab')2 but not with irrelevant [177Lu]Lu-DOTA-trastuzumab F(ab')2. Tumour uptake at 24 h p.i. of [64Cu]Cu-DOTA-panitumumab F(ab')2 [14.9 ± 1.1% injected dose/gram (%ID/g) and [177Lu]Lu-DOTA-panitumumab F(ab')2 (18.0 ± 0.4%ID/g) were significantly higher (P < 0.05) than [177Lu]Lu-DOTA-trastuzumab F(ab')2 (2.6 ± 0.5%ID/g), demonstrating EGFR-mediated tumour uptake. There were no significant differences in the radiation equivalent doses in the tumour and most normal organs estimated for [177Lu]Lu-DOTA-panitumumab F(ab')2 based on the BOD of [64Cu]Cu-DOTA-panitumumab F(ab')2 compared to those estimated directly from the BOD of [177Lu]Lu-DOTA-panitumumab F(ab')2 except for the liver and whole body which were modestly underestimated by [64Cu]Cu-DOTA-panitumumab F(ab')2. Region-of-interest (ROI) analysis of microPET/CT images provided dose estimates for the tumour and liver that were not significantly different for the two radioimmunoconjugates. Human doses from administration of [177Lu]Lu-DOTA-panitumumab F(ab')2 predicted that a 2 cm diameter HNSCC tumour in a patient would receive 1.1–1.5 mSv/MBq and the whole body dose would be 0.15–0.22 mSv/MBq.ConclusionA PET theranostic strategy combining [64Cu]Cu-DOTA-panitumumab F(ab')2 to image HNSCC tumours and predict the equivalent radiation doses in the tumour and normal organs from RIT with [177Lu]Lu-DOTA-panitumumab F(ab')2 is feasible. RIT with [177Lu]Lu-DOTA-panitumumab F(ab')2 may be a promising approach to treatment of HNSCC due to frequent overexpression of EGFR.
Highlights
Epidermal growth factor receptors (EGFR) are overexpressed on many head and neck squamous cell carcinoma (HNSCC)
Tumours were imaged by microPET/Computed tomography (CT) with [64Cu]Cu-DOTA-panitumumab F(ab')2 or microSPECT/CT with [177Lu]Lu-DOTApanitumumab F(ab')2 but not with irrelevant [177Lu]Lu-DOTA-trastuzumab F(ab'
There were no significant differences in the radiation equivalent doses in the tumour and most normal organs estimated for [177Lu]Lu-DOTA-panitumumab F(ab')2 based on the BOD of [64Cu]Cu-DOTA-panitumumab F(ab')2 compared to those estimated directly from the BOD of [177Lu]Lu-DOTA-panitumumab F(ab')2 except for the liver and whole body which were modestly underestimated by [64Cu]Cu-DOTA-panitumumab F(ab'
Summary
Epidermal growth factor receptors (EGFR) are overexpressed on many head and neck squamous cell carcinoma (HNSCC). Our aim was to assess the feasibility of a theranostic strategy that combines positron emission tomography (PET) with [64Cu]Cu-DOTA-panitumumab F(ab') to image HNSCC and predict the radiation equivalent doses to the tumour and normal organs from RIT with [177Lu]Lu-DOTA-panitumumab F(ab'). Head and neck squamous cell carcinoma (HNSCC) is the 7th most prevalent cancer in the world (Bray, 2018). In the United States, HNSCC is responsible for 3% of all cancers and 1.8% of all deaths due to cancer (Siegel, 2020). HNSCC is treated by surgery followed by radiation (50–70 Gy) or chemoradiotherapy (CRT) with high dose cisplatin (100 mg/m2) administered every 3 weeks for 3 cycles (Chow, 2020; De Felice et al, 2018; Schüttrumpf et al, 2020). Reduction in the dose of cisplatin (< 50 mg/m2) or substituting carboplatin may reduce these toxicities but is associated with poorer survival
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.