Abstract
Background and purposeGeometric information such as distance information is essential for dose calculations in radiotherapy. However, state-of-the-art dose prediction methods use only binary masks without distance information. This study aims to develop a dose prediction deep learning method for nasopharyngeal carcinoma radiotherapy by taking advantage of the distance information as well as the mask information. Materials and methodsA novel transformation method based on boundary distance was proposed to facilitate the prediction of dose distributions. Radiotherapy datasets of 161 nasopharyngeal carcinoma patients were retrospectively collected, including binary masks of organs-at-risk (OARs) and targets, planning CT, and clinical plans. The patients were randomly divided into 130, 11 and 20 cases for training, validating, and testing the models, respectively. Furthermore, 40 patients from an external cohort were used to test the generalizability of the models. ResultsThe proposed method shows superior performance. The predicted dose error and dose–volume histogram (DVH) error of our method were 7.51% and 11.6% lower than the mask-based method, respectively. For the inverse planning, compared with mask-based methods, our method provided similar performances on the GTVnx and OARs and outperformed on the GTVnd and the CTV, the pass rates of which increased from 89.490% and 90.016% to 96.694% and 91.189%, respectively. ConclusionThe preliminary results on nasopharyngeal carcinoma radiotherapy cases showed that our proposed distance-guided method for dose prediction achieved better performance than mask-based methods. Further studies with more patients and on other cancer sites are warranted to fully validate the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.