Abstract

Study DesignExperimental animal study.PurposeWe aimed to determine the optimal dose of a single direct injection of the tumor necrosis factor (TNF)-α inhibitor, etanercept, by using the rat model of degenerative intervertebral disc from injury.Overview of LiteratureThe pain-related peptide expression was suppressed in the etanercept (100 µg and 1,000 µg)-administered groups in a dose-dependent manner.MethodsThe neurotracer FluoroGold (FG) was applied to the surfaces of L4/5 discs to label their innervating dorsal root ganglion (DRG) neurons (n=50). Ten rats were included in the nonpunctured disc sham surgery control group, whereas the other 40 were included in the experimental group in which intervertebral discs were punctured with a 23-gauge needle. Saline or etanercept (10 µg, 100 µg, or 1,000 µg) was injected into the punctured discs (n=10 for each treatment). After 14 days of surgery, DRGs from L1 to L6 were harvested, sectioned, and immunostained for calcitonin gene-related peptide (CGRP). The proportion of FG-labeled CGRP-immunoreactive DRG neurons was evaluated in all the groups.ResultsThere were no significant differences between the puncture+saline group and the puncture+10-µg etanercept group (p >0.05). However, a significant decrease in the percentage of FG and CGRP double-positive cells in FG-positive cells was observed in the etanercept (100 µg and 1,000 µg)-administered groups in a dose-dependent manner (p <0.05).ConclusionsWhen a low dose of the TNF-α inhibitor (10 µg of etanercept) was directly administered to the rat intervertebral disc in the rat model of degenerative intervertebral disc from injury, no suppressive effect on the pain-related peptide expression was observed. However, when a higher dose of etanercept (100 µg and 1,000 µg) was administered, the pain-related peptide expression was suppressed in a dose-dependent manner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.