Abstract

The purpose of this research was to establish the dose of UV light (253.7 nm) needed to inactivate Listeria monocytogenes in distilled water, fresh brine (9% NaCl), spent brine, and diluted (5, 35, and 55%) spent brine, using uridine as a chemical actinometer. Strains N1-227 (isolated from hot dog batter), N3-031 (isolated from turkey franks), and R2-499 (isolated from meat) were mixed in equal proportions and suspended in each solution prepared so as to contain 10(-4) M uridine. Samples were irradiated in sterile quartz cells for 0, 5, 10, 15, 20, 25, or 30 min. Inactivation was evaluated by serially diluting samples in 0.1% peptone, by surface plating in duplicate onto modified Oxford agar and Trypticase soy agar with yeast extract, and by enrichment in brain heart infusion broth, followed by incubation at 37 degrees C for 24 to 48 h. For dose measurements, the absorbance (262 nm) was measured before and after irradiation. Differences were observed in population estimates depending on the solution (P < or = 0.05). Reductions were as follows from greatest to least: water > fresh brine > 5% spent brine > 35% spent brine > 55% spent brine > undiluted spent brine. UV light did not significantly reduce populations suspended in spent brine solutions. L. monocytogenes decreased to below the detection limit (1 log CFU/ml) at doses greater than 33.2 mJ/cm(2) in water and at doses greater than 10.3 mJ/cm(2) in fresh brine. Knowledge of UV dosing required to control L. monocytogenes in brines similar to those used for ready-to-eat meat processing will aid manufacturers in establishing appropriate food safety interventions for these products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call