Abstract

Since the skin dose becomes the limiting factor while deciding the tumorcidal dose, the detailed analysis of dose distribution in the build-up region is necessary for high-energy photon beams. In this study the beam characteristics affecting the build-up and skin dose for 6- and 18-MV photons are analyzed. Measurements were made with 6- and 18-MV photons using a PTW parallel-plate ionization chamber (B 23344-036) and a RDM-1F electrometer. Build-up ionization measurements were made with the chamber fitted into a 25 x 25 x 25 cm polystyrene phantom with a fixed SSD of 100 cm. The entrance and build-up dose measurements were made with a polycarbonate and a mesh type metallic shielding tray and a 45 degrees wedge. Exit dose measurements were carried out for the graphite patient supporting assembly table top, 1.0 cm thick piece of wood and the 1.0 cm thick patient supporting perspex base frame for head and neck treatments. It was observed that the dmax decreased slightly with field size as with other accelerators. For both photon energies the surface dose was observed to increase with increase in field size. It was also noticed that the dose in the build-up region increases slightly when the polycarbonate secondary blocking tray is introduced with the increase in surface dose. The data show that the tray perturbation factor (TPF) at surface decreases steadily with tray-surface distance for both photon beams for all field sizes. It was noted that the TPF was more when the polycarbonate tray was introduced at shorter tray-surface distances for both energies. At tray-surface distances above 60 cm the TPF almost remained close to unity for 6-MV photons for all field sizes, whereas the continuous decrease in TPF could be noted for 18-MV photon beams even after the TPF reached unity. The increase in surface dose with field size for both photon energies is due to the electron scattering from the intervening materials. The use of wedge filters absorbs low-energy scattered electrons significantly and hence, the relative surface dose (RSD) is always less than unity. The increase in dose enhancement percentage with graphite compared to perspex supporting assembly indicates that the electron backscatter is proportional to the atomic number of the medium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call