Abstract

We have investigated, using molecular dynamics techniques, the sputtering yield enhancement of amorphous silicon produced by argon ion accumulation within the target. Several amorphous silicon samples, with different argon contents, were bombarded with 1 keV argon ions at normal incidence. To study the influence of the target structure, we considered samples with different argon arrangements, either uniformly distributed or within solid bubbles. We have observed that silicon sputtering yield increases linearly with dose until steady state conditions are reached. This enhancement is produced by the shallow argon atoms through the weakening of Si–Si bonds. We have also observed that argon release takes place even long after the end of the collisional phase, and it is produced by ion-induced desorption and bubble destabilization. This enhanced argon yield determines the dose where target saturation and steady state conditions are reached.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.