Abstract

Polymeric nanoparticles (NPs) are the most widely researched nanoformulations and gained broad acceptance in nanotherapeutics for targeted drug delivery and theranostics. However, lack of regulations, guidelines, harmonized standards, and limitations with their employability in clinical circumstances necessitates an in-depth understanding of their toxicology. Here, we examined the in-vivo toxicity of core-shell polymeric NPs made up of gelatin core coated with an outer layer of aminocellulose-grafted polycaprolactone (PCL-AC) synthesized for drug delivery purposes in inflammatory disorders. Nanoparticles were administered intravenously in Swiss albino mice, in multiple dosing (10, 25, and 50 mg/kg body weight) and outcomes of serum biochemistry analysis and histopathology evaluation exhibited that the highest 50 mg/kg administration of NPs altered biochemistry and histopathology aspects of vital organs, while doses of 10 and 25 mg/kg were safe and biocompatible. Further, mast cell (toluidine blue) staining confirmed that administration of the highest dose enhanced mast cell infiltration in tissues of vital organs, while lower doses did not exhibit any of these alterations. Therefore, the results of the present study establish that the NPs disposal in-vivo culminates into alterations in organ structure and function consequences such that lower doses are quite biocompatible and do not demonstrate any structural or functional toxicity while some toxicological effects start appearing at the highest dose.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call