Abstract

22q11 deletion (del22q11) syndrome is characterized genetically by heterozygous deletions within chromosome 22q11 and clinically by a constellation of congenital malformations of the aortic arch, heart, thymus, and parathyroid glands described as DiGeorge syndrome (DGS). Here, we report that compound heterozygosity of mouse homologs of two 22q11 genes, CRKL and TBX1, results in a striking increase in the penetrance and expressivity of a DGS-like phenotype compared to heterozygosity at either locus. Furthermore, we show that these two genes have critical dose-dependent functions in pharyngeal segmentation, patterning of the pharyngeal apparatus along the anteroposterior axis, and local regulation of retinoic acid (RA) metabolism and signaling. We can partially rescue one salient feature of DGS in Crkl+/-;Tbx1+/- embryos by genetically reducing the amount of RA produced in the embryo. Thus, we suggest that del22q11 is a contiguous gene syndrome involving dose-sensitive interaction of CRKL and TBX1 and locally aberrant RA signaling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.