Abstract

IntroductionEnteral nutrition (EN) involves replacing all or part of a person’s habitual diet with a nutritional formula. The impact of varying doses of EN on the gut microbiome remains understudied. MethodsHealthy adults replaced all (100% EN) or part (85% EN, 50% EN and 20% EN) of their energy requirements with EN for 7 days. Faecal samples were collected before and on day 7 of interventions. Faecal pH, short chain fatty acids (SCFAs), branched-chain fatty acids (BCFAs) and 16S rRNA sequencing were performed. Dietary assessment was performed with 7-day food diaries. ResultsSixty-one participants (31 females; median (IQR) age: 24.7 (23.0-27.8) years) were recruited. A dose-dependent impact of EN on faecal microbiota, SCFAs, BCFAs) and pH was observed, with changes detectable at EN intakes of at least 50% of energy requirements. 100% and 85% EN reduced the abundance of fibre-fermenting taxa such as Agathobacter, Faecalibaterium, Succinivibrio and Acidaminococcus. In parallel, potentially harmful organisms like Eubacterium, Actinomyces, and Klebsiella increased. In the 50% EN group, adherence to a diet high in fish, vegetables, potatoes, non-alcoholic beverages, and fat spreads, and low in cereal products, milk, and meat negatively correlated with changes in microbiota structure (r=-0.75, P=0.025). This signal was not observed when using compositional tools for microbiota analysis. ConclusionsEN detrimentally influences the faecal microbiota and diet-related bacterial metabolites in a dose-dependent manner, particularly at doses of at least 50%. The findings of this study have implications for the dietary management and counselling of patients receiving high volume EN.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call