Abstract

Selenium (Se) is a developmental toxicant in oviparous vertebrates. The adverse reproductive effects of Se toxicity have been predominantly investigated in fishes and birds with only a few studies focusing on amphibians. The objective of this study was to determine tissue-based toxicity thresholds for early life stage Se toxicities in Xenopus laevis as a consequence of in ovo exposure through maternal transfer of dietary Se. Following a 68-day dietary exposure to food augmented with l-selenomethionine (SeMet) at measured concentrations of 0.7 (control), 10.9, 30.4, or 94.2 μg Se/g dry mass (d.m.), adult female X. laevis were bred with untreated males, and resulting embryos were incubated until 5 days postfertilization (dpf). The measured Se concentrations in eggs were 1.6, 10.8, 28.1, and 81.7 μg Se/g d.m., respectively. No biologically significant effects were observed on fertilization success, hatchability, or mortality in offspring. Frequency and severity of morphological abnormalities were significantly greater in 5 dpf tadpoles from the highest exposure group when compared to the control, with eye lens abnormalities being the most prominent of all abnormalities. The estimated EC10 value for frequency of total early life stage abnormalities was 44.9 μg Se/g egg d.m., which suggests that this amphibian species is less sensitive to in ovo Se exposure than most of the fish species studied to date.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call