Abstract

Arginine vasopressin (AVP) and related peptides have diverse effects on social behaviors in vertebrates, sometimes promoting affiliative interactions and sometimes aggressive or antisocial responses. The type of influence, in at least some species, depends on social contexts, including the sex of the individuals in the interaction and/or on the levels of peptide within brain circuits that control the behaviors. To determine if AVP promotes different responses to same- and other-sex faces in men, and if those effects are dose dependent, we measured the effects of two doses of AVP on subjective ratings of male and female faces. We also tested if any influences persist beyond the time of drug delivery. When AVP was administered intranasally on an initial test day, 20 IU was associated with decreased social assessments relative to placebo and 40 IU, and some of the effects persisted beyond the initial drug delivery and appeared to generalize to novel faces on subsequent test days. In single men, those influences were most pronounced, but not exclusive, for male faces, whereas in coupled men they were primarily associated with responses to female faces. Similar influences were not observed if AVP was delivered after placebo on a second test day. In a preliminary analysis, the differences in social assessments observed between men who received 20 and 40 IU, which we suggest primarily reflect lowered social assessments induced by the lower dose, appeared most pronounced in subjects who carry what has been identified as a risk allele for the V1a receptor gene. Together, these results suggest that AVP’s effects on face processing, and possibly other social responses, differ according to dose, depend on relationship status, and may be more prolonged than previously recognized.

Highlights

  • Arginine vasopressin (AVP) and related peptides, including its ancestral, non-mammalian homolog, arginine vasotocin (AVT), act as central neuromodulators across vertebrates that regulate, among other functions, social behavior [reviewed in Ref. [1,2,3]]

  • In tropical damselfish, AVT’s ability to stimulate aggression in males follows an inverted U function, with mid-range doses being most effective [8]. This suggest that higher doses do not produce maximal behavioral output upon receptor saturation, but may have influences that counteract those of lower doses or induce alternative behavioral responses, perhaps by activating different patterns of receptors across the Social Brain Network (SBN)

  • The mean response in men given 20 IU was significantly lower if they had received drug on day 1 than on day 2 (−0.82, 95%CI −1.56 to −0.08, p = 0.03; not shown). These results suggest lasting influences of AVP that appear, at least in part, associated with decreased responses induced by 20 IU on the first test day

Read more

Summary

Introduction

Arginine vasopressin (AVP) and related peptides, including its ancestral, non-mammalian homolog, arginine vasotocin (AVT), act as central neuromodulators across vertebrates that regulate, among other functions, social behavior [reviewed in Ref. [1,2,3]]. Dose-Dependent Effects of AVP projections from these nodes and the distributions of peptide receptors are highly variable across species, including numerous target sites outside of the traditional SBN. This variation likely accounts for the diversity of behavioral effects these peptides have across species [reviewed in Ref. In tropical damselfish, AVT’s ability to stimulate aggression in males follows an inverted U function, with mid-range doses being most effective [8] This suggest that higher doses do not produce maximal behavioral output upon receptor saturation, but may have influences that counteract those of lower doses or induce alternative behavioral responses, perhaps by activating different patterns of receptors across the SBN. Sex/phenotype-specific influences include cases in which behavioral patterns only exhibited by one sex are affected (most often male-typical behaviors, as in the damselfish example above); cases in which the peptide induces opposite effects in the sexes [9,10,11,12], and even cases in which the peptide has different effects in individuals of the same sex that adopt alternative mating strategies [13]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.