Abstract

Vertebral Stereotactic ablative body radiotherapy (SABR) involves substantial tumour density heterogeneities. We evaluated the impact of a linear Boltzmann transport equation (LBTE) solver dose calculation on vertebral SABR dose distributions. A sequential cohort of 20 patients with vertebral metastases treated with SABR were selected. Treatment plans were initially planned with a convolution style dose calculation algorithm. The plan was copied and recalculated with a LBTE algorithm reporting both dose to water (Dw) or dose to medium (Dm). Target dose as a function of CT number, and spinal cord dose was compared between algorithms. Compared with a convolution algorithm, there was minimal change in PTV D90% with LBTE. LBTE reporting Dm resulted in reduced GTV D50% by (mean, 95% CI) 2.2% (1.9-2.6%) and reduced Spinal Cord PRV near-maximum dose by 3.0% (2.0-4.1%). LBTE reporting Dw resulted in increased GTV D50% by 2.4% (1.8-3.0%). GTV D50% decreased or increased with increasing CT number with Dm or Dw respectively. LBTE, reporting either Dm or Dw resulted in decreased central spinal cord dose by 8.7% (7.1-10.2%) and 7.2% (5.7-8.8%) respectively. Reported vertebral SABR tumour dose when calculating with an LBTE algorithm depends on tumour density. Spinal cord near-maximum dose was lower when using LBTE algorithm reporting Dm, which may result in higher spinal cord doses being delivered than with a convolution style algorithm. Spinal cord central dose was significantly lower with LBTE, potentially reflecting LBTE transport approximations.

Highlights

  • Vertebral Stereotactic ablative body radiotherapy (SABR) involves substantial tumour density heterogeneities

  • We evaluated the impact of a linear Boltzmann transport equation (LBTE) solver dose calculation on vertebral SABR dose distributions

  • LBTE reporting dose to medium (Dm) resulted in reduced Gross Tumour Volume (GTV) D50% by 2.2% (1.9-2.6%) and reduced Spinal Cord planning organ-at-risk volume (PRV) near-maximum dose by 3.0% (2.0-4.1%)

Read more

Summary

Methods

A sequential cohort of 20 patients with vertebral metastases treated with SABR were selected. Treatment plans were initially planned with a convolution style dose calculation algorithm. The plan was copied and recalculated with a LBTE algorithm reporting both dose to water (Dw) or dose to medium (Dm). Target dose as a function of CT number, and spinal cord dose was compared between algorithms

Results
Conclusion
Discussion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.