Abstract

The effects of Delta-9-tetrahydrocannabinole (Delta-9-THC) on locomotor activities and related basal ganglia neural responses were investigated in rats. A multiple-channel, single unit recording method was used to record neuronal activity in the dorsal lateral striatum, the globus pallidus, the subthalamic nucleus, and the substantia nigra pars reticulata simultaneously during spontaneous movement and treadmill locomotion. Delta-9-THC treatment (0.05-2.0 mg/kg, i.p.) dose-dependently decreased spontaneous motor activity and altered walking patterns in treadmill locomotion in that stance time was increased and step number was decreased. In parallel with the behavioral effects, Delta-9-THC treatment inhibited neural activity across all four basal ganglia areas recorded during both motor tests. Further, this inhibition of basal ganglia neural activity was behavioral context-dependent. Greater inhibition was found during resting than during walking periods in the treadmill locomotion test. Delta-9-THC treatment also changed firing patterns in the striatum and globus pallidus. More neurons in these regions discharged in an oscillatory pattern during treadmill walking with Delta-9-THC, and the oscillatory frequency was similar to that of the step cycle. Synchronized firing patterns were found in few basal ganglia neurons in the control condition (approximately 1%). Synchronized firing patterns increased during the treadmill resting phase after Delta-9-THC treatment, but still represented a very small proportion of the total neural population (1.9%). The drug treatment did not change neural responses to the tone cue proceeding treadmill locomotion. This study demonstrates dose-dependent inhibitory effects of cannabinoid injection on motor activity. This effect may be related to the behavioral context-dependent inhibition observed in the basal ganglia system where CB1 receptors are densely distributed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.