Abstract

Dose adaptation for liver disease is important in patients treated with antineoplastic drugs because of the high prevalence of impaired liver function in this population and the dose-dependent, frequently serious adverse effects of these drugs. We classified the antineoplastic drugs marketed in Switzerland at the end of 2004 according to their bioavailability and/or hepatic extraction to predict their kinetic behaviour in patients with decreased liver function. This prediction was compared with kinetic studies carried out with these drugs in patients with liver disease. The studies were identified by a structured, computer-based literature search. Of the 69 drugs identified, 52 had a predominant extrarenal (in most cases hepatic) metabolism and/or excretion. For 49 drugs, hepatic extraction could be calculated and/or bioavailability data were available, allowing classification according to hepatic extraction. For 18 drugs, kinetic studies have been reported in patients with impaired liver function, with the findings generally resulting in quantitative recommendations for adaptation of the dosage. In particular, recommendations are precise for 16 drugs excreted by the bile (e.g. doxorubicin and derivatives and vinca alkaloids). Validation studies comparing such recommendations with kinetics and/or dynamics of antineoplastic drugs in patients with decreased liver function have not been published. We conclude that there are currently not enough data for safe use of cyctostatics in patients with liver disease. Pharmaceutical companies should be urged to provide kinetic data (especially hepatic extraction data) for the classification of such drugs and to conduct kinetic studies for drugs with primarily hepatic metabolism in patients with impaired liver function to allow quantitative advice to be given for dose adaptation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.