Abstract

This paper discusses the architecture and performance studies of Datacenter Optical Switch (DOS) designed for scalable and high-throughput interconnections within a data center. DOS exploits wavelength routing characteristics of a switch fabric based on an Arrayed Waveguide Grating Router (AWGR) that allows contention resolution in the wavelength domain. Simulation results indicate that DOS exhibits lower latency and higher throughput even at high input loads compared with electronic switches or previously proposed optical switch architectures such as OSMOSIS [4, 5] and Data Vortex [6, 7]. Such characteristics, together with very high port count on a single switch fabric make DOS attractive for data center applications where the traffic patterns are known to be bursty with high temporary peaks [13]. DOS exploits the unique characteristics of the AWGR fabric to reduce the delay and complexity of arbitration. We present a detailed analysis of DOS using a cycle-accurate network simulator. The results show that the latency of DOS is almost independent of the number of input ports and does not saturate even at very high (approx 90%) input load. Furthermore, we show that even with 2 to 4 wavelengths, the performance of DOS is significantly better than an electrical switch network based on state-of-the-art flattened butterfly topology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.