Abstract

In cloud computing, network Denial of Service (DoS) attacks are well studied and defenses have been implemented, but severe DoS attacks on a victim's working memory by a single hostile VM are not well understood. Memory DoS attacks are Denial of Service (or Degradation of Service) attacks caused by contention for hardware memory resources on a cloud server. Despite the strong memory isolation techniques for virtual machines (VMs) enforced by the software virtualization layer in cloud servers, the underlying hardware memory layers are still shared by the VMs and can be exploited by a clever attacker in a hostile VM co-located on the same server as the victim VM, denying the victim the working memory he needs. We first show quantitatively the severity of contention on different memory resources. We then show that a malicious cloud customer can mount low-cost attacks to cause severe performance degradation for a Hadoop distributed application, and 38X delay in response time for an E-commerce website in the Amazon EC2 cloud. Then, we design an effective, new defense against these memory DoS attacks, using a statistical metric to detect their existence and execution throttling to mitigate the attack damage. We achieve this by a novel re-purposing of existing hardware performance counters and duty cycle modulation for security, rather than for improving performance or power consumption. We implement a full prototype on the OpenStack cloud system. Our evaluations show that this defense system can effectively defeat memory DoS attacks with negligible performance overhead.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.