Abstract

BackgroundDorsal spine reduction in threespine sticklebacks (Gasterosteus aculeatus) is a classic example of recurrent skeletal evolution in nature. Sticklebacks in marine environments typically have long spines that form part of their skeletal armor. Many derived freshwater populations have evolved shorter spines. Changes in spine length are controlled in part by a quantitative trait locus (QTL) previously mapped to chromosome 4, but the causative gene and mutations underlying the repeated evolution of this interesting skeletal trait have not been identified.ResultsRefined mapping of the spine length QTL shows that it lies near the MSX2A transcription factor gene. MSX2A is expressed in developing spines. In F1 marine × freshwater fish, the marine allele is preferentially expressed.Differences in expression can be attributed to splicing regulation. Due to the use of an alternative 5 ′ splice site within the first exon, the freshwater allele produces greater amounts of a shortened, non-functional transcript and makes less of the full-length transcript. Sequence changes in the MSX2A region are shared by many freshwater fish, suggesting that repeated evolution occurs by reuse of a spine-reduction variant.To demonstrate the effect of full-length MSX2A on spine length, we produced transgenic freshwater fish expressing a copy of marine MSX2A. The spines of the transgenic fish were significantly longer on average than those of their non-transgenic siblings, partially reversing the reduced spine lengths that have evolved in freshwater populations.ConclusionsMSX2A is a major gene underlying dorsal spine reduction in freshwater sticklebacks. The gene is linked to a separate gene controlling bony plate loss, helping explain the concerted effects of chromosome 4 on multiple armor-reduction traits. The nature of the molecular changes provides an interesting example of morphological evolution occurring not through a simple amino acid change, nor through a change only in gene expression levels, but through a change in the ratio of splice products encoding both normal and truncated proteins.

Highlights

  • Dorsal spine reduction in threespine sticklebacks (Gasterosteus aculeatus) is a classic example of recurrent skeletal evolution in nature

  • Dorsal spine and anal spine lengths map to chromosome 4 A large F2 cross derived from a Japanese marine stickleback (JAMA) and a freshwater benthic stickleback from Paxton Lake, British Columbia (PAXB), has previously been used to map quantitative trait locus (QTL) for lateral plate number, pelvic spine length, ventral pigmentation, and many components of the axial and branchial skeleton [9, 10, 25, 26]

  • Using a set of 375 F2 fish from a single pair of F1 parents, we found that the lengths of the three dorsal spines and anal spine are all influenced by a major QTL on chromosome 4 (Fig. 1a)

Read more

Summary

Introduction

Dorsal spine reduction in threespine sticklebacks (Gasterosteus aculeatus) is a classic example of recurrent skeletal evolution in nature. Sticklebacks in marine environments typically have long spines that form part of their skeletal armor. Many derived freshwater populations have evolved shorter spines. Changes in spine length are controlled in part by a quantitative trait locus (QTL) previously mapped to chromosome 4, but the causative gene and mutations underlying the repeated evolution of this interesting skeletal trait have not been identified. Threespine sticklebacks (Gasterosteus aculeatus) provide an unusual opportunity to study the genetic basis of major differences in vertebrate skeletal morphology. Freshwater stickleback populations have repeatedly evolved dramatic changes in the size and number of those structures, sometimes losing entire dorsal spines or the entire pelvic girdle [5].

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.