Abstract

SummarySudden unexpected death in epilepsy (SUDEP) is the leading cause of death among patients with epilepsy. However, the underlying mechanism of SUDEP remains elusive. Previous studies showed seizure-induced respiratory arrest (S-IRA) is the main factor in SUDEP, and that enhancement of serotonin (5-HT) function in the dorsal raphe nucleus (DR) can significantly reduce the incidence of S-IRA in the DBA/1 mouse model of SUDEP. The pre-Bötzinger complex (PBC), known for its role in regulating respiratory rhythm, can express the 5-HT2A receptor (5-HT2AR). Here, using the pharmacological and optogenetic methods, respectively, we observed that the serotonergic neural circuit between DR and PBC was involved in S-IRA evoked by either acoustic stimulation or pentylenetetrazole (PTZ) injection in the DBA/1 mice, and found 5-HT2AR located in PBC plays an important role in it. Our findings will further significantly improve our understanding of SUDEP and provide a promising therapeutic target for SUDEP prevention.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.