Abstract
Exposure to a cocaine-paired context increases the propensity for relapse in cocaine users and prompts cocaine-seeking behavior in rats. According to the reconsolidation hypothesis, upon context re-exposure, established cocaine-related associations are retrieved and can become labile. These associations must undergo reconsolidation into long-term memory to effect enduring stimulus control. The dorsal hippocampus (DH), dorsolateral caudate-putamen and dorsomedial prefrontal cortex are critical for the expression of context-induced cocaine seeking, and these brain regions may also play a role in the reconsolidation of cocaine-related memories that promote this behavior. To test this hypothesis, rats were trained to press a lever for unsignaled cocaine infusions (0.2 mg/infusion, i.v.) in a distinct environmental context (cocaine-paired context), followed by extinction training in a different context (extinction context). Rats were then re-exposed to the cocaine-paired context for 15 min in order to reactivate cocaine-related memories or received comparable exposure to a novel unpaired context. Immediately thereafter, rats received bilateral microinfusions of the protein synthesis inhibitor anisomycin, the sodium channel blocker tetrodotoxin or vehicle into one of the above brain regions. After additional extinction training in the extinction context, reinstatement of cocaine-seeking behavior (i.e., non-reinforced lever presses) was assessed in the cocaine-paired context. Tetrodotoxin, but not anisomycin, administered into the DH inhibited drug context-induced cocaine-seeking behavior in a memory reactivation-dependent manner. Other manipulations failed to alter this behavior. These findings suggest that the DH facilitates the reconsolidation of associative memories that maintain context-induced cocaine-seeking behavior, but it is not the site of anisomycin-sensitive memory restabilization per se.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.