Abstract
Determination of the dorso-ventral dimension of the vertebrate retina is known to involve retinoic acid (RA), in that high RA activates expression of a ventral retinaldehyde dehydrogenase and low RA of a dorsal dehydrogenase. Here we show that in the early eye vesicle of the mouse embryo, expression of the dorsal dehydrogenase is preceded by, and transiently overlaps with, the RA-degrading oxidase CYP26. Subsequently in the embryonic retina, CYP26 forms a narrow horizontal boundary between the dorsal and ventral dehydrogenases, creating a trough between very high ventral and moderately high dorsal RA levels. Most of the RA receptors are expressed uniformly throughout the retina except for the RA-sensitive RAR β, which is down-regulated in the CYP26 stripe. The orphan receptor COUP-TFII, which modulates RA responses, colocalizes with the dorsal dehydrogenase. The organization of the embryonic vertebrate retina into dorsal and ventral territories divided by a horizontal boundary has parallels to the division of the Drosophila eye disc into dorsal, equatorial and ventral zones, indicating that the similarities in eye morphogenesis extend beyond single molecules to topographical patterns.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Mechanisms of Development
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.