Abstract

The surface resistance of thin monocrystalline W plates as a function of the constant magnetic field H directed along the normal to the sample surface is studied in the r.f. spectrum region. The sample surface was cleaned in high vaccum (10 -11 torr) or coated with the monomolecular impurity film. The oscillating with the magnetic field part R osc due to the Doppler-shifted cyclotron resonance is studied. The doppleron oscillation amplitude is found to depend on the surface state and increases with the crystal cleaning. The observed changes are caused by the increase of the specular reflection coefficient for resonance electrons. With the deviation of the magnetic field from the normal to the plate surface, the doppleron wave undergoes a collisionless magnetic Landau damping and the signal amplitude decreases down to values comparable with that of Gantmakher-Kaner oscillations. Cleaning of the surface (and related increase of specularity) gives rise to a further decrease of the doppleron amplitude and appearance of additional interference maxima induced by the Gantmakher-Kaner effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.