Abstract

Detecting bioprosthetic mitral valve dysfunction on transthoracic echocardiography can be challenging because of acoustic shadowing of regurgitant jets and a wide normal range of transvalvular gradients. Several studies in mechanical mitral valves have demonstrated the utility of the transthoracically derived parametersE (peak early mitral inflow velocity), pressure half-time, and the ratio of mitral inflow velocity-time integral(VTIMV) to left ventricular outflow tract velocity-time integral (VTILVOT) in detecting significant prostheticdysfunction. Uncertainty exists as to their applicability and appropriate cutoff levels in bioprosthetic valves. This study was designed to establish the accuracy and appropriate normal limits of routinely collected transthoracic Doppler parameters when used to assess bioprosthetic mitral valve function. A total of 135 clinically stable patients with bioprosthetic mitral valves who had undergone both transthoracic and transesophageal echocardiography within a 6-month period were retrospectively identified from the past 11years of the echocardiography database. Transthoracic findings were labeled as normal (n=81), regurgitant (n=44), or stenotic (n=10) according to the patient's transesophageal echocardiographic findings. Univariate and multivariate analyses were performed to identify Doppler parameters that detected dysfunction; then receiver operating characteristic curves were created to establish appropriate normal cutoff levels. The VTIMV/VTILVOT ratio was the most accurate Doppler parameter at detecting valvular dysfunction, with a ratio of >2.5 providing sensitivity of 100% and specificity of 95%. E>1.9m/sec was slightly less accurate (93% sensitivity, 72% specificity), while a pressure half-time of >170msec had both 100% specificity and sensitivity for detecting significant bioprosthetic mitral valve stenosis, (although it did not differentiate between regurgitant and normal). This study demonstrates that Doppler parameters derived from transthoracic echocardiography can accurately detect bioprosthetic mitral valve dysfunction. These parameters, particularly a VTIMV/VTILVOT ratio of >2.5, are a sensitive way of selecting patients to undergo more invasive examination with transesophageal echocardiography.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call